Empirical Smoothing Parameter Selection in Adaptive Estimation
نویسندگان
چکیده
منابع مشابه
Model Indexing and Smoothing Parameter Selection in Nonparametric Function Estimation
Smoothing parameter selection is among the most intensively studied subjects in nonpara-metric function estimation. A closely related issue, that of identifying a proper index for the smoothing parameter, is however largely neglected in the existing literature. Through heuris-tic arguments and simple simulations, we shall illustrate that most current working indices are conceptually \incorrect"...
متن کاملGradient Based Smoothing Parameter Selection for Nonparametric Regression Estimation*
Data-driven bandwidth selection based on the gradient of an unknown regression function is considered. Uncovering gradients nonparametrically is of crucial importance across a broad range of economic environments such as determining risk premium or recovering distributions of individual preferences. The procedure developed here is shown to deliver bandwidths which have the optimal rate of conve...
متن کاملCREDIBILISTIC PARAMETER ESTIMATION AND ITS APPLICATION IN FUZZY PORTFOLIO SELECTION
In this paper, a maximum likelihood estimation and a minimum entropy estimation for the expected value and variance of normal fuzzy variable are discussed within the framework of credibility theory. As an application, a credibilistic portfolio selection model is proposed, which is an improvement over the traditional models as it only needs the predicted values on the security returns instead of...
متن کاملAsymptotic Properties of Smoothing Parameter Selection in Spline Smoothing
The asymptotic properties of smoothing parameter estimates for smoothing splines are developed. We consider a variety of estimates including Generalized Cross Validation, Generalized Maximum Likelihood, and more generally Type II ML estimates and the properties of the marginal posterior mode. Under the usual Sobolov space frequentist assumptions on the function to be estimated , consistency and...
متن کاملRobust smoothing: Smoothing parameter selection and applications to fluorescence spectroscopy
Fluorescence spectroscopy has emerged in recent years as an effective way to detect cervical cancer. Investigation of the data preprocessing stage uncovered a need for a robust smoothing to extract the signal from the noise. Various robust smoothing methods for estimating fluorescence emission spectra are compared and data driven methods for the selection of smoothing parameter are suggested. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Statistics
سال: 1992
ISSN: 0090-5364
DOI: 10.1214/aos/1176348892